

PRUEBAS DE ACCESO A LA UNIVERSIDAD

LOE - JUNIO 2014

QUÍMICA

INDICACIONES

Debe elegir una opción completa de problemas.

OPCIÓN DE EXAMEN Nº 1

- 1.[2 PUNTOS] Dado el elemento X de número atómico 19:
 - a) Escribe su configuración electrónica.
 - b) Indica a qué grupo y período pertenece.
 - c) ¿Cuáles son los valores posibles que pueden tomar los números cuánticos de su electrón más externo?
 - d) Escribe la configuración electrónica de otro elemento Y, de su mismo período, con el que forme un compuesto XY mediante enlace iónico.
- 2. [2 PUNTOS] Considera la reacción química siguiente: 2 Cl (g) Cl₂ (g). Contesta razonadamente:
 - a) ¿Qué signo tiene la variación de entalpía de dicha reacción?
 - b) ¿Qué signo tiene la variación de entropía de esta reacción?
 - c) ¿La reacción será espontánea a temperaturas altas o bajas?
 - d) ¿Cuánto vale ΔH de la reacción, si la energía de enlace CI Cl es 243 kJ·mol⁻¹?
- 3. [2 PUNTOS] Se introducen 2 moles de COBr₂ en un recipiente de 2 L y se calienta hasta 73 °C. El valor de la constante de equilibrio Kc, a esa temperatura, para el equilibrio

$$COBr_2$$
 (g) \longrightarrow CO (g) + Br_2 (g) es 0,09.

- a) Calcula el número de moles de las tres sustancias en el equilibrio.
- b) Calcula en dichas condiciones la presión total del sistema.
- c) Calcula en dichas condiciones el valor de la constante Kp.
- d) Si se introduce un mol más de COBr₂, y se espera a que se alcance de nuevo el equilibrio, cuál será el valor de Kc y razona si aumentará o disminuirá la nueva presión total.

DATO: $R = 0.082 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot K^{-1}$.

4. [2 PUNTOS] Dada la reacción:

$$K_2Cr_2O_7 + HI + H_2SO_4 \longrightarrow K_2SO_4 + Cr_2(SO_4)_3 + I_2 + H_2O_4$$

- a) Ajústala mediante el método del ión-electrón.
- b) Indica la especie química que se reduce y la que se oxida.
- c) Si quisiera construir una pila con esta reacción, indica la semirreacción que tiene lugar en el ánodo y la que ocurre en el cátodo.
- d) Calcula el potencial normal de la pila formada por estos dos electrodos.

DATOS:
$$E^{0}(Cr_{2}O_{7}^{2-}/Cr^{3+}) = 1{,}33 \text{ V}; \quad E^{0}(I_{2}/I^{-}) = 0{,}54 \text{ V}.$$

- **5.** [2 PUNTOS] Nombra y formula, según corresponda, las siguientes parejas de moléculas orgánicas, indica si son isómeros y el nombre de su grupo funcional.
 - a) CH₃-CO-CH₂-CH₃ y butanal.
 - b) CH₃-CH₂-CH₂-CH₂OH y 2-metil-2-propanol.
 - c) CH₃-CH₂-COOH y ácido 3-pentenoico.
 - d) CH₃-CH₂-CH₂-NH-CH₃ y fenilamina.

OPCIÓN DE EXAMEN Nº 2

- 1. [2 PUNTOS] Explica qué tipo de fuerzas de atracción y/o enlace químico debe vencerse para llevar a cabo los siguientes procesos:
 - a) Fundir bromuro de calcio, CaBr₂(s).
 - b) Hervir agua, H₂O(l).
 - c) Evaporar oxígeno, O₂(l).
 - d) Fundir cesio, Cs(s).
- 2. [2 PUNTOS] Sabiendo que la temperatura de ebullición de un líquido es la temperatura a la que el líquido puro y el gas puro se encuentran en equilibrio a 1 atm de presión, y la $\Delta G = 0$. Considera el siguiente proceso: $Br_2(1) \Longrightarrow Br_2(g)$
 - a) Calcula ΔH^o a 25 °C. y da una explicación relativa al signo obtenido.
 - b) Calcula ΔS^o y relaciónalo con la variación del orden en el proceso.
 - c) Calcula ΔGo e indica si el proceso es espontáneo a dicha temperatura.
 - d) Determina la temperatura de ebullición del Br₂, suponiendo que ΔH^o y ΔS^o no varían con la temperatura.

$$\begin{array}{ll} \text{DATOS: } \Delta H^o_{\ f} \, [\text{Br}_2 \, (g)] = 30,91 \ \text{kJ} \cdot \text{mol}^{-1}; & \Delta H^o_{\ f} \, [\text{Br}_2 \, (l)] = 0; \\ \text{S}^o \, [\text{Br}_2 \, (g)] = 245,4 \ \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}; & \text{S}^o [\text{Br}_2 \, (l)] = 152,2 \ \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}. \end{array}$$

- [2 PUNTOS] Para la reacción en fase gaseosa ideal: A + B → C + D cuya ecuación cinética o de velocidad es v = k · [A], indica razonadamente como varía la velocidad de reacción:
 - a) Al disminuir el volumen del sistema a la mitad.
 - b) Al variar las concentraciones de los reactivos, sin modificar el volumen del sistema.
 - c) Al utilizar un catalizador y/o al aumentar la temperatura.
 - d) Indica el orden total de la reacción.
- 4. [2 PUNTOS] El pH de una disolución de ácido acético, CH₃ COOH, es 2,9. Calcula:
 - a) La concentración de ácido acético en la disolución.
 - b) El grado de disociación del ácido acético en dicha disolución.
 - c) Razona como varia el pH si se adiciona acetato sódico a la disolución.
 - d) Determina el valor de la K_b de su base conjugada.

DATO: $k_a(CH_3 - COOH) = 1.8 \cdot 10^{-5}$.

- **5.** [2 PUNTOS] El hidróxido de magnesio es poco soluble en agua (Kps = 1.8×10^{-11}).
 - a) Formula el equilibrio de disolución del hidróxido de magnesio y escribe la expresión para Kps.
 - **b)** Calcula la solubilidad del hidróxido en mol \cdot L⁻¹.
 - c) Razona cómo afectaría a la solubilidad la adición de ácido clorhídrico.
 - d) Razona cómo afectaría a la solubilidad la adición de cloruro de magnesio.